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This paper addresses the problem of design of collocated and non-collocated controllers
for a uniform bar without structural damping. The bar whose dynamics are described by the
wave equation is required to perform a rest-to-rest maneuver. A time delay controller whose
gains are determined using the root-locus technique is used to control the non-collocated
system. The effect of sensor locations on the stability of the system is investigated when the
actuator is located at the one end of the bar. The critical gains which correspond to a pair of
poles entering the right-half of the s-plane and the optimal gains corresponding to locating
the closed-loop poles at the left extreme of the root-locus for each vibration mode are
determined. The gain which minimizes a quadratic cost, in the range of the critical gains, is
selected as the optimum gain.

© 2000 Academic Press

1. INTRODUCTION

The problem of determining stability of a collocated and non-collocated sensor-actuator
pair is one of the current interest. Yang and Mote [1] have shown that instability
is a potential problem when non-collocated control is used and propose an approach
to stabilize flexible structures with non-collocated sensor-actuator pairs by introducing
a time-delay element into the controller. In another paper, Yang and Mote [2] use
their proposed approach to design a controller for active vibration control of an axially
moving string. They show that by introducing a specific time delay into the controller
structure, all the vibratory modes can be stabilized and the spillover instability can be
avoided.

Chung and Tan [3] address the problem of control of the transverse vibration of an
axially moving string using transfer function and wave cancellation concepts. The feedback
controller is shown to consist of a velocity sensor, a proportional gain and a time delay.
Datko et al. [4] investigate the effects of time delays in boundary feedback stabilization
schemes for wave equations.

The location of actuators and sensors affects the transfer function zeros of a structure.
Wie and Bryson [5] investigate the effect of actuator and sensor locations on the transfer
function zeros using uniform bars and beams as generic models of flexible space structures.
They also show that some flexible structures behave as if there were direct transmission
between actuators and sensors (equal number of zeros and poles in the transfer function).

In this work, the closed-loop control of a uniform bar with boundary actuation whose
equation of motion is the wave equation is studied. The locations of both zeros and poles in
the open-loop transfer function are important for control design. Alli and Singh [6] use
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information about the poles of the open-loop transfer function of the wave equation to
design the exact time-optimal controller. In this work, the same open-loop transfer function
is used to design collocated and non-collocated feedback controllers. A time-delay
proportional derivative controller is proposed to stabilize the closed-loop system. The effect
of the magnitude of the gains of the controller on the stability of the collocated and
non-collocated controller is studied using the root-locus technique. Equations are derived
to determine the gains that correspond to the transfer of a pair of poles from the left half to
the right half of the complex plane. Having determined the range of gains that result in
stable controllers, the optimum gains which correspond to locating the poles at the left
extreme of the root-loci for every mode are determined, which in conjunction with
a quadratic cost, are used to select the optimum gain.

2. CONTROLLER DESIGN

A technique to design controllers for distributed parameter systems which uses the
Lyapunov’s direct method and a frequency domain approach is proposed. The proposed
approach is exemplified by the design of a feedback controller for rest-to-rest control of an
undamped rod in axial vibration. The control is applied at the boundary of the rod whose
equation of motion is

*y(x, 1) *y(x, 1)
P—op B

(M

where p is the mass per unit length, E the Young’s modulus, 4 the cross-sectional area and
L the length of the rod. The associated boundary conditions are

0yO.0 _ _u (L0

ox  EA 0x

=0 ?)

and the initial and final conditions for a rest-to-rest maneuver are

0y(x,0)  0dy(x,t
0,0 = PO VL) g gy 1) =y, ®

where t, and y, represent final time and displacement respectively.

2.1. LYAPUNOV-BASED CONTROLLER

Lyapunov’s direct approach is proposed to arrive at a stable controller. A candidate
Lyapunov function which includes terms which represent the kinetic, strain and
pseudo-potential energy is

L

1 (* 1 1
g0 =2f py(x, 1) dx +5 J EAY (0P dx +5 kG ) =3 (4)

0 0
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where (-) and () represent time and spatial derivatives, respectively, and x, represents
the location of the sensor. The time derivative of the candidate Lyapunov function leads
to

L

V()= J py(x, J(x, 1) dx + J EAy'(x, 0)y'(x, ) dx + k1 J (x5, D (X5, 1) = yys). - (5)

0 0

Substituting equations (1) and (2) into equation (5) and after some algebraic manipulation,
we have

V(t) = 30, ) u(t) + k(x5 )(¥(Xs, 1) — yy). (6)

For the collocated sensor—actuator case, x, will be zero. Substituting x; = 0 into equation
(6), we obtain

V(©) = y(0, O[u() + ki (v(0, 1) — y,)]. ()
The control law
u(t) = — koy(0, 1) — ki (y(0, 1) — yy), @)
where ky, k, > 0 leads to
V() = — k:y(0, 1)? ©)

which is negative semi-definite and ensures that the system is stable.

For the non-collocated case, we have to have some relationship between the sensor and
actuator position. Yang and Mote [1] proposed using a time delay in the control law to
stabilize the system. We use this idea to design controllers for the non-collocated system
undergoing rest-to-rest maneuvers in the frequency domain.

2.2. FREQUENCY DOMAIN APPROACH

Laplace transformation of equations (1) and (2) leads to
y"(x, 5) — ¢2s2y(x, s) = 0, (10
where 1/c is the wave speed and c is defined as
¢ =p/EA (11)
and the Laplace transformation of the boundary conditions are

y'(0,s) = —u(s)/EA and y'(L,s)=0. (12)
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The solution of equation (10) is
y(x, s) = C; cosh(csx) + C, sinh(csx), (13)

where the constants C; and C, are determined by evaluating equation (13) at the
boundaries. The resulting open-loop transfer function is

y(x,s) cosh(cs(L — x))

= 14
u(s) EA c¢s sinh(csL) 14
with the system open-loop poles located at
s=0,0 and s=iﬂi, n=12,..., oo. (15)
cL

Consider a output feedback controller illustrated by Figure 1, where the system transfer
function has been rewritten as

y(xa S) — ZO(X, S)

) (16)
u(s) Po(s)
where
Zo =cosh(cs(L — x)) and P, = EAcsinh(csL). (17)
The control input to the plant is given by the equation
u(s) = r(s) — ylxs, s)G(s), (18)
where y(x;, s) is the displacement measured by a sensor located at x;.
Substituting equation (18) and x = x, into equation (16), we have
Zo(xs,
Yy 5) = Lo M) (19
Po(s) + Zo(xs, 5)G(s)
(s) /N u(s) Zo(x,s) Y.5)
Po(s)
G(s)

Figure 1. Feedback structure of the controller.
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Substituting equations (18) and (19) into equation (16) and rearranging the resulting
equation, we have

5y = 2ot [r | Zolx, DG } 20)
PR Po(s) + Zo(x,, )G ()
yielding
Y5 _ Zexs) o
r(s)  Po(s) + Zo(xs, 5) G(s)
which is the closed-loop transfer function. The closed-loop characteristic equation is
g(s) = Po(s) + Zo(x,, 1)G(s) = 0 (22)

which will be used to study the stability of feedback controllers.

2.2.1. Collocated sensor—actuator case

For the collocated sensor—actuator case, x, = 0 and as indicated in equation (8), the
Lyapunov stable control law leads to

G(s) = ky (ks + 1), (23)

where k = k,/k,, the gain ratio. Substituting equation (23) and x, = 0 into equation (22), the
closed-loop characteristic equation is

g(s) = EAcs sinh(csL) + kq(ks + 1) cosh(csL) = 0. (24)

We will use the root-locus technique to study the effects of the gains k; and k.

Pan and Chao [8], propose a technique to generate the root-loci which can be easily used
to generate root-loci of distributed parameter systems. For a system with the characteristic
equation

g(s) = B(s) + KA(s) =0 (25)
they suggest defining differential equations
dK/dt = + 1, (26)
where ¢ is a dummy variable and
dg/dt = —¢g (27)
which implies that g is stable. Using the chain rule, we have

do_ 29 dK | 3gds _

d&t K d TasarT Y (28)

which can be rewritten as

ds _ — (g + 0g/ok)

dt  dg/os 29
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Figure 2. Root locus for the collocated case. ++ +,k=35;....k=4;—, k =3.

where K(0) =0, which corresponds to the open-loop case. The corresponding initial
condition for equation (29) is s(0) = S, where Sy, is the set of all the open-loop poles, each of
which leads to a root locus. Equation (29) is used to generate root loci where K = k; and k is
fixed. Figure 2 represents the root loci for different values of k. It is evident that one pole
approaches the leftmost breakoff point from co. Wei and Bryson [ 5], conjecture that this is
attributable to direct transmission from actuator to sensor. Figure 2 corroborates the
convergence of the root loci to the zeros which are located at

2n—1
2

1
s=—% and s = mi, n=1,2,..., 0 (30)

assuming EA, ¢ and L are equal to unity. It is evident from the root locus that they do not
cross the imaginary axis which agrees with the stability of the Lyapunov-based controller
which required the feedback gains to be positive.

The time response of the rest-to-rest maneuver is presented in Figure 3. Figure 2 show
that the system with the collocated sensor-actuator and PDD controller is stable for any
ki, k> 0.

2.2.2. Non-collocated sensor—actuator case

Practical limitation might not permit collocation of sensor—actuator pairs. On the other
hand, non-collocated sensor-actuators have the potential of destabilizing the system for
some feedback gains. In this section, we attempt to obtain a relationship between the sensor
and the actuator position to make the system stable using the root-locus technique.
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The open-loop poles of the undamped wave equation are located on the imaginary
axis. We need to determine the direction of motion of the root loci from these open-loop

poles. If

da,/dk, <0,

where

G, + 1w,

Sn

and g, is the real portion of the closed-loop poles, then the system is stable for k,&(0, k).

ki 1s the smallest gain that can destabilize the system. The derivative of equation (32) w.r.t.

kq 1s

do, do,.

ds,
dk,

1)

+

dk,

dk,

If real (ds,

).

33

(

where do,/dk, is the real portion of equation

k changes form zero to zero plus (k,

of k.

then the system is stable for some range

s

)

0-0"

To obtain ds,/dk;, we study equation (22) with a PD controller

EAcs sinh(csL) + ky(ks + 1) cosh(cs(L — x,)) =0

g(s)
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which is rewritten as

= s ; ﬁfgs;(ﬁgsf )xs))' (33
The derivative of equation (35) w.r.t. s, leads to
% _ - EAc [sinh(csL) + c¢Ls cosh(cs(L — x,)) (ks + 1)cosh(cs(L — x;))
ds, (ks + 1)*(cosh(cs(L — x,)))?
N EAcs [sinh(csL)[k cosh(cs(L — x4))(ks + 1)c(L — x,)sinh(cs(L — xs))]' (36)

(ks + 1)%(cosh(cs(L — x,)))?

After some simplification and substituting s, = (n7/cL)i, which are the open-loop poles,
into equation (36), we obtain

dky\  dk; NTX . [(nmx,
Re (ds,,) 4o~ 4EAc[cos <T> + sm( I >} 37

Rearranging equation (37), we have

do, —1 —1
dky — 4EAc[cos(nmx,/L) + sin(nnx/L)]  4EAc[\/2sin(nmx,/L + n/4)]

which cannot be negative for all values of n except when x, = 0 which corresponds to the
collocated case. This proves that a PD controller will not stabilize a non-collocated
controller. Since it is intuitive that there should exist a time delay that relates the signal at
the location of the actuator and the sensor, we propose a time-delay feedback controller of
the form

G(s) = kye T(ks + 1) = 0, (39)
where T is the time delay. The resulting closed-loop characteristic equation is
g(s) = EAcssinh(csL) + ke~ (ks + 1)cosh(cs(L — x,)) = 0. (40)
After some simplification of equation (40), k; can be represented as

— EAcs(1 — e~ %)
= (e—s(cxx+ T,) + e_S(C(2L+xS)+T"))(kS + 1)

ky 41)

We now determine the relationship between the time delay and the location of the sensor by
using the procedure described above to determine stability. This results in the equation

do, ds, _
o <Re ( dk1>>s_0 S @)
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for the poles located at s = 0 when k; changes 0 to 0* and

do, ds, _ . nm . [(nm
ak, <Re <dk1>>sn = (nn/cL)i = — 4EAc [cos <CL (exs + Td)> + sin <CL(cxs + Tﬁ)}

= - 4EAc[ﬁ sin <Z—Z(cxs + T, + %ﬂ (43)

for the poles located at s = + nmi/cL. Because of stability requirement, do,/dk; should
always be less than zero, which requires

2mnn < ne (cxs + Ty) + T < (2mn + D). (44)
cL 4
Sincen =1, 2,..., oo and T, has to be positive, the above inequality is satisfied only when
exg+ Ty=2mcL, m={1,2,...,00} (45)
which requires
T,=c(2mL — x;) foronem={1,2,..., wo}. (46)

Equations (46) shows that the time delay is a function of the wave speed, length of the bar
and the sensor position. The range of the feedback gains for which the time-delay controller
is stable has not yet been determined. Therefore, to determine the range of gains for which
the time-delay controller is stable, we need to determine the smallest gain which
corresponds to the intersection of a root locus with the imaginary axis. The procedure to
achieve this is described in the next section.

2.2.3. Determination of destabilizing gain

In order to obtain the maximum gains (or critical gain), we have to find the inter-section
of the root loci with the imaginary axis at points other than the open-loop poles. Let the
intersection be

s = +ia,, (47)

where a, is the location on the imaginary axis which corresponds to the intersection of the
nth root locus. Substituting equations (46) and (47) into equation (41) and equating the
imaginary part of the right-hand side of equation (41) to zero, since k; is a real number, we
arrive at the equation

ko, (— sin(2(m — 1)cLa,) + sin(2mcLa,)) — cos(2m — 1)cLa,) + cos(2mcLa,) = 0,

nnm=1,2,..., © (48)
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which can be solved to determine o,. The real part of equation (41) gives us the gains which

corresponds to the point of intersection of the root locus with the imaginary axis:

EA
(k) = ZC“" (— sin(2(m — 1)cLay,) + sin@mecLa,)), mm=1,2, ..., o (49)

Therefore, for stability, the gain k; should lie in the range (0, min((k),).
If we locate the sensor at x, = L, equation (41) simplifies to

_ EAcssinh(cLs)

ky =——~ "
P (ks + D) 2me

m=1,2,..., 0 (50

which has to be satisfied for one m. Following the procedure delineated above, the location
of the root loci with the imaginary axis is given by the solutions of the equation

tan(cLa,) — ko, =0, n=1,2,..., © (51)
and the corresponding gain is

ko2 1

ki),=EA . = EA =1,2,..., 0. 2
( 1)n C1+(kOCn)2 Cl/k(xf'i‘k, n 5 > , 90 (5 )
We note that as o, tends to oo, (k;), tends to
EAc
lim (kl),,=7°, n=1,2,..., 0. (53)

Thus, the critical gain is given by the equation

1

(kl )critical = mln(kl )n = EAc m >

n=12,..., . (54)

Figure 4 illustrates the variation of the critical gain as a function of the location of
intersection of the root locus with the imaginary axis. It is evident from the figure that the
gain k, asymptotically approaches the value EAc/k and that the critical gain for the systems
is the gain corresponding to the root loci which initiate at the location of the rigid body
poles.

Figure 5 illustrates various root-loci with x;, = L, for different value of gain ratio k, Figure
6 is a three-dimensional plot which shows the time response of different points of the bar,
when the sensor is located at x; = L and the controller is a time-delay proportional plus
derivative feedback controller.

For non-collocated case, the sensor position should be such that x,/L is an irrational
number to ensure that all the modes are observable. Consider the case when x, = L/2, if we
substitute x, = L/2 into the open-loop transfer function, we have

y(xs,8)  cosh(es(L/2)) cosh(cs(L/2)) _ 1 55
u(s)  EAcssinh(csL)  EAcs2cosh(es(L/2),sinh(es(L/2))  EAcs?2sinh(es(L/2)) (53)
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Figure 6. Time response of the non-collocate case (x; = L).

which indicates pole-zero cancellation resulting in only the poles at (2n7/cL)1 being observable.
Figure 7, which plots the root locus also indicates that the poles at ((2n — 1)w/cL)i are
unobservable. Figure 8 shows that the time response of this system results in residual energy
which can be attributed to spillover of the control into modes that cannot be observed.

2.2.4. Optimum overall gain

It is evident from the root loci in Figure 5 that the slope of the root locus goes to infinity
at points where the root locus has reached the farthest point in the left-half of the complex
plane. Substitute s = ¢ + iw into equation (41) and taking its derivative with respect to the

real part of the poles, we have
dky ds\ 7!
= =0 56
( ds da) (56)

when the slope of the root locus is infinity.

Figure 9 illustrates the gain which corresponds to when the root locus changes direction
from moving to the left to moving to the right of the complex plane. It can be seen that the
largest gain corresponds to the rigid-body mode by which time the rest of the roots have
started moving toward the imaginary axis. The gains asymptotically tend to a constant
for root-loci of the higher modes. The roots of equation (56) give only the optimum gain for
each mode, however we need the overall optimum gain for the system which generate the
quickest response.

The cost function V

V= J (vy — y(L, 1))* dt (57)
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is used to determine the optimum gain in the range where the system poles are at the
extreme left of the root loci (Figure 9). Table 1 lists the cost for a range of the gain k;.
Figure 10 illustrates the pole locations when we apply the gain k; = 0-1048 which
corresponds to the smallest cost in the range of interest.
To compare the system time response for different overall gains, we simulate the system
for k = 5.In Figure 11, it is evident that the system response is similar to a critically damped
system when we use the optimum gain obtained from Table 1.

3. CONCLUSIONS

A Lyapunov-based approach has been used to design controllers for the wave equation
with collocated sensor—actuator pairs and a frequency domain approach is used to study

n— —

08 -

Axial displacement
=)
=Y
T

1 1 1
0 2 4 6 8 10 12 14 16
Time

0 '.I 1 1 1

Figure 11. Time response corresponding the optimum overall gain (x = L). dashed line. k1 = 0-05; solid line,
k1 = 0-10479 (opt): bold solid line. k1 = 0-14.

TABLE 1

Cost versus feedback gain

k, total cost
0-1000 2-772314
0-1015 2-754139
0-1030 2-736514
0-1045 2719417

0-1048 2-716059
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the non-collocated case. The root locus is used to determine the gains of a time-delay
proportional and derivative feedback controller which stabilize the system. Based on the
root-locus analysis, we make the following conclusions: For the collocated case any gain
greater than zero makes the system stable. For the non-collocated case, there exists
a specific time delay which is a function of wave speed, bar length and sensor position which
can stabilize the system provided the ratio of the sensor location to the length of the bar is
an irrational number or the sensor is located at the boundary. The range of stable gains is
determined by determining the minimum gain that forces a root locus into the right half of
the complex plane. A technique to determine the optimum gain which results in the
close-loop poles being located at the left extreme of the root locus has been proposed, which
is used to select a gain which minimizes a quadratic cost.
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